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Results are presented from analyses of high-precision time series of measurements of 
temperature and total heat transport obtained in a high-Prandtl-number (Pr = 26) 
fluid contained in a rotating, cylindrical annulus subject to a horizontal temperature 
gradient. Emphasis is placed on regions of parameter space close to the onset of 
irregular and/or chaotic behaviour. Two distinct transitions from oscillatory to 
apparently chaotic flow have been identified. The first occurs in an isolated region of 
parameter space at  moderate to high Taylor number in association with a transition 
to a lower azimuthal wavenumber, in which a quasi-periodic (m = 3) amplitude 
vacillation (on a 2-torus) gives way to a low-dimensional (D - 3) chaotically 
modulated vacillation at very low frequency (apparently organized about a 3-torus). 
The spatial structure of the chaotic flow exhibits the irregular growth and decay of 
azimuthal sidebands suggestive of a nonlinear competition between adjacent 
azimuthal wavenumbers. The other main transition to aperiodic flow occurs at high 
Taylor number as the stability parameter 8 is decreased, and is associated with the 
onset of ‘structural vacillation ’. This transition appears to be associated with the 
development of small-scale instabilities within the main m = 3 baroclinic wave 
pattern, and exhibits a route to chaos via intermittency. The nature of the apparent 
chaos in these two aperiodic regimes is discussed in relation to possible mechanisms 
for deterministic chaos, apparatus limitations, and to previous attempts to model 
nonlinear baroclinic waves using low-order spectral models. 

1. Introduction 
Baroclinic waves are typical features of the stably stratified mid-latitude 

circulation of the atmosphere, where they contribute strongly to the poleward and 
vertical transport of heat and momentum, and release potential energy associated 
with the large-scale horizontal (equatorward) temperature gradient. Essentially the 
same wave-like features are also of importance in the oceans, and the atmospheres 
of planets other than the Earth. These disturbances are some of the most energetic 
components of the atmospheric circulation, and it is widely recognized that the 
predictability of the atmosphere is strongly dependent upon the detailed behaviour 
of the fully developed forms of these waves. 

Attempts to model and study the dynamics of fully developed baroclinic waves are 
fraught with mathematical difficulties because of the strong intrinsic nonlinearities 
due to the advection of momentum, vorticity and temperature. In this context, 
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laboratory studies of free thermal convection in a cylindrical fluid annulus, 
differentially heated in the horizontal and rotated about its (vertical) axis of 
symmetry, have been a valuable source of insight (e.g. Hide & Mason 1975). The flow 
in such a system is well known to exhibit a wide variety of distinct regimes, 
depending upon the imposed external conditions. Such regimes include steady 
axisymmetric flows, and non-axisymmetric flows which may be either spatially 
regular and steady or quasi-periodic in time, or spatially irregular and aperiodic in 
time. The axisymmetric flows largely consist of laminar overturning motions 
concentrated into boundary layers, while non-axisymmetric flows are dominated in 
the quasi-geostrophic interior by fully developed baroclinic waves (Hide & Mason 
1975). 

In  attempting to account for the rich variety of flow regimes exhibited in the 
rotating annulus (e.g. see Hignett et al. 1985; hereafter referred to as HWCJS), much 
theoretical work has been concentrated on linear and weakly nonlinear mathematical 
models, frequently (though not necessarily) based on quasi-geostrophic theory (e.g. 
Pedlosky 1987). Linear theory can give useful insight into the conditions under which 
the axisymmetric regime will occur, and has shown that baroclinic waves will grow 
via an instability of the axisymmetric flow with wave structures which are often 
similar to observed disturbances. Weakly nonlinear theory focuses attention upon 
supercritical conditions close to the onset of instability, where only one or two wave 
components may be linearly unstable. Various analyses have considered the 
equilibration of unstable baroclinic waves, either to steady or periodically vacillating 
states (e.g. see Hart 1979 for a review). Further analyses (e.g. Gibbon & McGuinness 
1980; Pedlosky & Frenzen 1980; Brindley & Moroz 1980) have even indicated ways 
in which flows with very simple spatial structure (e.g. a single wave and a zonal flow) 
may undergo transitions to aperiodic, chaotic behaviour. Under certain conditions, 
the amplitude equations reduce to the classical three-component Lorenz (1963~)  
equations. 

Under more strongly supercritical conditions, theoretical studies have tended to 
follow Lorenz (1963 6 )  in studying the behaviour of fully nonlinear, though severely 
spectrally truncated, quasi-geostrophic numerical models. It has long been 
recognized that such models are capable of exhibiting flow regimes with several 
aspects apparently in common with laboratory systems, such as regular waves, 
periodic vacillations and irregular flow. The extent to which such models account for 
the experimentally observed flow regimes in detail, however, remains unclear. A 
further problem with severely truncated spectral models is that the occurrence of 
certain regimes, notably involving low-dimensional chaos, may be strongly 
dependent upon the level of truncation (e.g. Nese, Dutton & Wells 1987 ; Curry et al. 
1984). Such a problem is of even greater concern regarding the frequent application 
of truncated spectral models in the interpretation of atmospheric phenomena (e.g. 
Cehelsky & Tung 1987). 

Laboratory studies may have an important role as a physical means of testing and 
verifying such interpretive models and their convergence properties. Hart and co- 
workers have made considerable progress in studying the transition to ' baroclinic 
chaos ' in rotating two-layer experiments, and in trying to relate their results to the 
behaviour of various types of low-order model (e.g. Hart 1985, 1986; Ohlsen & Hart 
1989 a,  b ) ,  with experimental evidence for routes involving period-doubling cascades 
and quasi-periodicity. Despite a longer tradition of experimental studies, similar 
work on the transition to disordered flow in the thermal annulus does not seem to 
have progressed quite so rapidly. Guckenheimer & Buzyna (1983) investigated the 
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apparent increase in attractor dimension as the rotation rate was increased, taking 
the system into the so-called ' geostrophic turbulence ' regime, but did not investigate 
the properties of their reconstructed attractors in much detail. Most other reported 
studies have been concerned primarily with the spectral properties of the flow (both 
spatial and temporal) in the well-known irregular regime (e.g. Buzyna, Pfeffer & 
Kung 1984), with rather less attention directed towards characterizing the onset of 
'weak turbulence ' and chaos. 

In the present work, we concentrate upon regions in parameter space close to the 
initial onset of aperiodic behaviour, but in which the spatial structure remains 
relatively simple. Although some of the flows considered may be related to the well- 
known irregular regime, in the present paper we do not discuss the properties of fully 
developed irregular flow. Various methods are used to characterize the flows 
obtained, including spectral methods and attractor reconstruction techniques. The 
latter are particularly demanding of data quality and quantity, and of standards of 
experimental control. Accordingly, even though we are dealing with a well-studied 
experimental configuration, the use of these analysis techniques has required the 
development of an experimental and data acquisition strategy which is a considerable 
improvement on previous studies. Section 2 describes the technical details of the 
apparatus and analysis methods. Section 3 presents an overview of the main flow 
regimes encountered in the experiments, including a novel aperiodic doubly 
modulated travelling wave flow, and the properties of the reconstructed attractors, 
elucidating each main flow type by comparison. The nature and particular 
characteristics of each regime are discussed in more detail in $4, and the significance 
of the new results is discussed in $5. 

2. Apparatus and data reduction 
The apparatus consisted of a rotating annulus of conventional design, and was 

essentially the same as described by Hignett (1982,1985 ; hereafter referred to as H82 
and H85 respectively) and HWCJS. The working fluid was contained in the annular 
gap between two upright coaxial brass cylinders of radii r = 2.5 cm and 8.0 cm, and 
two rigid, insulating horizontal boundaries in contact with the fluid at z = 0 and 
14.0cm. The apparatus was rotated about its vertical axis of symmetry and 
differentially heated horizontally at the sidewalls (the outer cylinder being the 
warmer). The annulus was levelled to within rad and mounted on a turntable 
driven directly by a servo-controlled permanent magnet d.c. motor with a stability 
of about 1 part in lo4. The working fluid consisted of a 25% solution by volume of 
glycerol in water, with a mean density of 1.081 g cmT3 at 20 "C, kinematic viscosity 
v of 3.18 x om2 s-l and Prandtl 
number Pr ( = V / K )  of 26.4. Inhomogeneities in temperature across each side boundary 
were less than 2 YO of the applied temperature difference, and wall temperatures were 
kept constant in time typically to k0.02 K. 

The annulus was designed for the precision measurement of fluid and boundary 
temperatures (via thermocouples), and of total heat transport. Temperatures a t  the 
boundaries and in the fluid were measured using copper-constantan thermocouples 
(sensitivity - 40 pV per K). In the fluid, 32 thermocouples were equally spaced 
azimuthally at mid-height and mid-radius, enabling the wavenumber spectrum to be 
obtained readily by fast Fourier transform techniques. The total heat transport 
through the inner side boundary was measured using the method described by H82 
and HWCJS from the coolant (water) flow rate and the difference in temperature 

cm2 s-l, thermal diffusivity K of 1.20 x 
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between the inset and outlet. Use of a spiral channel adjacent to the inner cylinder 
to circulate the coolant kept the thermal time constant for the measurement of heat 
transport to no more than -8-10 s. The convection chamber and associated 
components were operated in a thermostatically controlled enclosure and, by using 
the procedures detailed by H82, total heat transport could be measured to  an 
absolute precision of - f 2 %, though much smaller relative changes ( - parts in lo’) 
could be detected. 

A variety of different procedures were used to take in and analyse the data. Short 
time series of measurements at all thermocouples in the fluid and boundaries, and of 
the total heat transport, scanned nearly simultaneously a t  25 readings per second by 
a reed relay scanner, were recorded and used to identify the dominant flow type and 
to measure the wave drift rates and (where appropriate) vacillation frequencies (e.g. 
see H85). This method was used over a wide region of the regime diagram to map the 
occurrence of principal flow types, using both impulsive spin-up starts and slow 
changes in rotation rate a t  constant temperature difference to explore all possible 
flow types occurring in a given region of parameter space. At selected points, much 
longer, high-precision time series of temperature a t  one of the ring thermocouples 
and the total heat transport were recorded for up to 250 drift periods (requiring up 
to 20 h of measurements) for subsequent analysis. To minimize the effects of scanner 
noise and other unwanted effects, the temperature a t  a single thermocouple and heat 
flow were scanned continuously a t  25 readings per s and averages over 1-2 s were 
recorded. For each flow for which a long single-point time series was measured, a 
contiguous short sequence of data a t  all thermocouples was also taken as above to  
assist with the characterization of the spatial properties of the flow. 

The long time series were required both for high-resolution power spectral analysis 
and for the reconstruction of ‘phase portraits’ by the ‘method of delays ’ (e.g. Takens 
1980; Eckman & Ruelle 1985). I n  the latter, a scalar time series T(t )  is represented 
as a trajectory in a K-dimensional embedding space by denoting the state of the flow 
at  time t by the vector [ T ( t ) , T ( t + ~ ) , T ( t + 2 7 )  . . .  T(t+(K-1)7)]. Given enough data 
a t  a representative point in the flow and an appropriate choice of the delay time 7 ,  

the time series generates a trajectory which lies on a manifold which is topologically 
equivalent to one in true phase space on which the attractor for the flow lies (Takens 
1980). From such a reconstructed ‘attractor ’, various invariant properties, such as 
estimates of attractor dimension and Lyapunov exponents, can (at least in principle) 
be derived (e.g. Eckmann & Ruelle 1985). Some examples of the calculation of such 
estimates from temperature and heat flow measurements are discussed below in 33. 

In  the present work, phase portrait reconstruction was further refined by the use 
of singular value decomposition (SVD - Broomhead & King 1986) to reproject the 
trajectory onto a statistically optimal orthogonal basis. As discussed by Broomhead 
& King (1986), this method eliminates some of the arbitrary choices to be made in 
time-delay embedding (e.g. of delay time 7).  Use of a truncated set of the derived 
eigenvectors also introduces a useful element of filtering which can remove some of 
the unwanted non-deterministic components of the signal. For the present work, 
time series were typically sampled a t  1.5-2 s intervals, placing 200 or more samples 
per wave drift period (though rather fewer per typical vacillation period, which 
ranged typically from 50-300 s). Most of the phase portraits displayed and analysed 
below were obtained using SVD with a ‘window ’ of 50 points sampled every timestep 
of the original time series ; i.e. a [50,1] window in the terminology of Broomhead & 
King (1986). Estimates of invariants such as dimension and the dominant Lyapunov 
exponent were typically derived from the SVD-projected trajectories. 
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3. Identification of chaotic regimes 
3.1. Regime diagram (Jisure 1)  

Before embarking upon a detailed study of particular flows and transitions, it is 
important to establish an appropriate regime diagram showing the regions of 
parameter space in which particular flow types are observed to occur. With the 
thermal annulus, flow regimes are commonly ordered with respect to two principal 
dimensionless parameters, found empirically to be the most important in determining 
the observed flow type; namely (a )  a stability parameter (sometimes referred to as 
a Burger or thermal Rossby number) 8, defined by 

gaATD 
[Q(b-a)]” 

8 =  

(where g is the acceleration due to gravity, a the volumetric expansion coefficient, AT 
the imposed thermal contrast, SZ the system rotation rate, and D, a and b the annulus 
depth, inner and outer radius respectively) ; and ( b )  a Taylor number, usually defined 
hv 
.- J 

4Q2(b - a)5 
v2D 

r= 

(where v is the kinematic viscosity). The regime diagram obtained in the present 
study is shown in figure 1. The dominant azimuthal wavenumber, m, of each flow is 
indicated by a number and the flow type by qualifying letters. Sharp transitions 
between regimes of different azimuthal wavenumber are marked as solid curves, and 
between regimes of the same m by thick dashed curves. Less sharply defined 
transitions are indicated by dotted lines. 

In common with other studies of baroclinic waves in the rotating annulus (e.g. 
Hide & Mason 1975), the incidence of multiple equilibria is widespread, in the sense 
that more than one wavenumber and/or flow type is obtainable at a given point in 
parameter space. Every type of flow obtained within the region of parameter space 
investigated is shown in figure 1. The flow obtained depends largely upon the initial 
conditions and the way the experimental conditions were approached. Regular wave 
flows are either found to be steady (apart from a slow azimuthal drift of a constant 
flow pattern around the apparatus) or to vary periodically in amplitude and/or 
structure in a form of behaviour which is frequently referred to as ‘vacillation’. Two 
main types of vacillation are widely reported in studies of rotating annulus 
convection (e.g. Hide & Mason 1975), namely ‘amplitude vacillation’ (AV) and 
‘structural vacillation’ (SV). In the former, the principal manifestation is that of a 
regular symmetric wave pattern oscillating periodically in amplitude, but with little 
change of form. Various authors have also noted more subtle effects such as 
asymmetries between the growth and decay rate of the dominant wave, and 
modulations of the drift rate of the wave synchronous with the modulation of wave 
amplitude, and the precise nature of this phenomenon is still a matter of some 
controversy (e.g. contrast H85 and Buzyna, Pfeffer & Kung 1989). In structural 
vacillation the dominant wavenumber component remains at  nearly constant 
amplitude but oscillates in structure or orientation. These oscillations may be 
periodic or irregular and a variety of characteristics have been reported (cf. Hide & 
Mason 1975; Pfeffer, Buzyna & Kung 1980; HWCJS). The onset of SV appears to 
signal the early stages of the development of fully irregular flow, in which the 
dominant wavenumber and flow structure varies erratically in a form of ‘geostrophic 
turbulence’ (e.g. Buzyna et al. 1984). 

20 FLM 238 
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FIQIJRE 1. Regime diagram defining the regions of parameter space over which particular 
wavenumbers and flow types were observed. Numbers within each region denote the dominant 
azimuthal wavenumber m. Unqualified numbers denote a steady wave state, AV denotes 
amplitude vacillations, SV structural vacillations and MAV modulated amplitude vacillations (see 
text). The region explored is outlined by thin diagonal dashed lines, and the locus of AT = 10 K 
is given by the solid diagonal line. Transitions between different wavenumbers are shown by solid 
curves, between regimes of the same wavenumber by heavy dashed curves, and the boundary 
between steady waves and AV by dotted lines. Representative cases discussed in the text are 
marked as points (i)-(vi). 

An extensive study of the regime diagram as a function of rotation rate and 
temperature difference for the apparatus used here was carried out by HWCJS and 
H85, though for a fluid with a significantly lower Prandtl number (Pr = 13.1). The 
present work extends over a narrower range in 0 and F than in the work of HWCJS 
(the region explored in detail here is outlined by thick diagonal dashed lines in figure 
l),  and focuses on the transition sequences encountered in the region close to the line 
AT = 10 K (indicated by the solid diagonal line in figure 1). The overall distribution 
of flow regimes found here is qualitatively similar to that found by HWCJS, but with 
some significant differences. The general locations of flow regimes are displaced with 
respect to HWCJS in the direction of lower Taylor number so that, for example, SV 
sets in a t  9- as low as 10'. The regime diagram obtained by H85 also showed the 
widespread incidence of multiple equilibria (see above), with the occurrence of 
regular AV flows in association with transitions to a lower wavenumber as 8 is 
increased (SZ decreased). As Pr is increased, it is generally found that AV becomes 
more widespread (e.g. Jonas 1981), and this trend is reflected in the regime diagram 
for the present system in figure 1 (in which dotted lines indicate the approximate 
locations of the m = 3-3AV and 2-2AV boundaries, arbitrarily defined following 
H85; see below), compared with that of H85 and HWCJS. 

The boundary between m = 3AV and m = 2 was also found to  be distorted from 
the monotonically increasing trend in 0 with F observed by HWCJS, owing to the 
development of a new regime for F > 3.5 x lo6, designated m = 3MAV (i.e. 
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Flow 
Case type 

(i) 3AV 
(ii) 3MAV 
(iii) 3AV 
(iv) 3 
(v) 3 s v  
(vi) 3SV 

T 
(K) 
9.99 

10.01 
10.06 
9.98 
9.98 
9.97 

52 

1.6263 
1.7162 
1.8730 
2.0302 
2.8147 
4.0013 

(rad/s) 
J 

8 ( x  106) 

0.659 3.76 
0.593 4.19 
0.500 4.99 
0.422 5.86 
0.220 11.3 
0.109 22.8 

'd 

(4 
543 
426 
544 
65 1 
802 - 1250 

TABLE 1.  Experimental parameters 

4 
( x  10-5 

D, bit/s) 

2.18 0.51 
2.97 1.79 
2.18 0.19 
1.20 0.24 
2.83 0.89 
3.36 4.76 

'modulated amplitude vacillation ', for reasons discussed in 54 below). In the latter 
regime the modulation index of regular AV, 7, defined by 

7 = (Amax - -Amin)/ (Amax +Amin)  9 (3.3) 
(where Amax and Amin are respectively the maximum and minimum wave amplitudes, 
cf. the quantity I ,  of H85), began to vary irregularly on a relatively long timescale 
2 1500 s. At its peak, 7 became large ( -  l),  so that the m = 3 pattern virtually 
disappeared at its minimum in the vacillation cycle. This transient increase in the 
strength of AV apparently caused the transition from m = 3 to m = 2 to occur more 
readily and at  a lower value of 0 over the region in parameter space in which MAV 
occurred. 

In order to examine the sequence of transitions in this region of parameter space 
in more detail, a number of long runs investigating m = 3 flows were carried out at  
AT = 10 K (effectively at fixed Grashof number Gr ( = @F ) = 6.19 x lo5) and for 
various values of SZ (Taylor number 9 ). A representative cross-section comprising 
six of these runs is discussed below, designated cases (i)-(vi). The characteristics of 
these six cases are listed in table 1 and their parametric locations indicated along the 
AT = 10 K line in figure 1.  Cases (i) and (iii) are examples of periodic m = 3AV 
(though see 54.1 below concerning (i)), while a steady wave state is represented by 
case (iv). A typical MAV is illustrated by case (ii), and two cases of SV are 
represented by cases (v) (incipient SV) and (vi) (fully developed SV). In the following 
subsection we discuss the main features of these regimes, illustrated by examples 
selected from these six principal cases. 

3.2. Time series and spectra (Jisures 2 4 )  

Figure 2 shows short (2500s) segments of the raw temperature (2') and heat 
transport ( N )  data for representative cases of MAV, AV, steady waves and SV (cases 
(ii), (iii), (iv) and (v) respectively). In the steady wave (figure 2 c ) ,  the temperature 
signal exhibits a simple periodic oscillation as the wave pattern drifts past the fixed 
measurement point, while the heat transport remains approximately constant (apart 
from a weak oscillation associated with a very weak residue of AV). In fully 
developed AV (figure 2 b ) ,  the wave drift is still evident as a slow, regular oscillation 
in the temperature signal, but the (fast) modulation in amplitude is also evident and 
reflected in a strong periodic oscillation in total heat transport. This oscillation in 
total heat transfer itself becomes modulated in the MAV regime (figure 2a),  resulting 
in a complex and rapidly varying temperature signal. The onset of SV, on the other 
hand, has a quite different signature (figure 2 d ) .  A weak and rapid, though 
irregularly fluctuating, component appears in the temperature signal, superimposed 

20-2 
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FIQURE 2. Extracts from time series of measurements of temperature T and total heat transport 
N for four representative flows with m = 3: (a) case (ii), (b) case (iii), (c) case (iv) and ( d )  case (v). 
Experimental conditions (8 and Y ) for each case are shown in table 1. Temperatures are in O C  and 
heat transport is shown (approximately) in W. 

8 
.- B 0.10 

2 
'CI - 
d 

0.01 

Azimuthal wavenumber Azimuthal wavenumber 
2 4 6 8 10 12 14 
Azimuthal wavenumber 

FIQURE 3. Time-averaged azimuthal wavenumber amplitude spectra, obtained by six repre- 
sentative flows: (a) case (i), (b) case (ii), (c) case (iii), (d) case (iv), (e) case (v) and ( f )  case (vi). 
Parameters for cases (i)-(vi) are shown in table 1. 
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upon the slow wave drift and accompanied by intermittent bursts of oscillation in 
total heat transfer. 

The spatial and frequency spectra from all six principal cases are illustrated in 
figures 3 and 4. Figure 3 illustrates azimuthal wavenumber spectra from the 32-point 
thermocouple ring, averaged over several mean drift periods of the dominant 
wavenumber. The spatial spectra from two m = 3AV states (figure 3a-c) are 
dominated by the main wavenumber m = 3 and its harmonics. The amplitudes of the 
higher harmonics in cases (i)-(iv) increase with Q until, in the steady wave regime 
(figure 3 4 ,  m = 6, 9 and 12 all become comparable (cf. H85). The sidebands of the 
dominant wavenumber are significantly non-zero, though for cases (iii)-(v) they are 
still smaller in amplitude than the harmonics (figure 3(c-e)). Analysis of the 
azimuthal phases showed that, at  least for cases (i)-(iv), the sidebands (m = 2 and 4) 
have the same average frequency with respect to the apparatus as m = 3, but for 
cases (iii) and (iv) (see below), m = 1 was stationary, consistent with the forcing of 
m = 1 by small departures from axial symmetry in the apparatus and thermocouple 
ring (cf. Hide, Mason & Plumb 1977; James, Jonas & Farnelll981). For cases (i) and 
(ii), the sidebands (especially the lower sideband) are significantly larger than 
harmonics m = 9 or 12, indicating the increasing presence of the m = 2 component 
as the transition from m = 3 to m = 2 is approached. 

Figure 4 shows frequency power spectra from the time series at a single 
thermocouple (obtained by averaging individual spectra from each of five 
overlapping data segments of 16384 points spanning each run) (a+ and g-i), and 
power spectra of the inner cylinder heat flux (with the same spectral resolution, 
windows and sampling) (d-f and j -Z ) .  The temperature frequency spectra for cases (i) 
and (iv) (figure 4a,  9 )  show the presence of strong components at the dominant wave 
drift frequency wd and its harmonics, the amplitude vacillation frequency w, and its 
harmonics, and a plethora of combination frequencies (cf. H85). The large number of 
discrete combination frequencies suggests that w, and wd are not commensurate, 
even for case (i) (for which w, - 3wd). This result is consistent, for example, with the 
findings of White & Koschmieder (1981), and would strongly suggest that frequency 
entrainment between wd and w, does not readily occur. Such a result would be 
expected on general grounds since, in the absence of departures from axial symmetry 
in the apparatus, no physical means of coupling the effects of wave drift and 
amplitude modulation exists. This kind of result was also predicted in the context of 
dynamical systems theory and symmetry arguments by Rand (1982). 

For most of these flows, the total heat transport is also modulated as a result of 
the growth and decay of the waves during wave vacillation cycles (see figure 2). 
Frequency power spectra for the total heat transport are also shown in figure 4 
which, for cases (i) and (iii), indicate a strong periodic modulation at w, and its 
harmonics (figure 4d,f) .  The index of modulation 7 (see (3.3)) shows a clear decrease 
towards zero with increasing Q, almost disappearing into the steady wave state 
around case (iv) (see figure 4 j ) .  The drift frequency and some of its harmonics are also 
just detectable in the heat transport spectra, though of very small amplitude, arising 
presumably because of interactions with departures from axial symmetry due to 
imperfections in the apparatus and thermocouple array. In the case of (i), quite 
strong components at w,/3 and 2w,/3 are also present (see 84.1 below). 

The modulated amplitude vacillation regime (MAV) is illustrated in figures 3 ( b )  
and 4(b,  e). Time-averaged spatial spectra in this regime are dominated by m = 3 and 
its harmonics, though non-harmonic components are also present at a much higher 
mean amplitude than for the regular rn = 3AV flows (e.g. case (iii)). The temperature 
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FIGURE 5. For caption see facing page. 

frequency spectrum (figure 4 b )  shows rather fewer discrete components than in cases 
(i) and (iii), though peaks a t  wd, w, and their lower-order harmonics and combinations 
are present. Also present is a substantial broadband component extending to high 
frequencies. In  the heat transport spectrum for case (ii) too (figure 4e), pronounced 
broadened peaks a t  w, and its harmonics are present, but with the additional 
presence of a new low-frequency component w,. Sum and difference components 
between w, and w, are also present, contributing to the broadening of the main peaks 
centred a t  nw, (n integer). 

At intermediate Q, the amplitude vacillation decays away until, by case (iv) 
(figures 2c, 3d and 4g,j), it is scarcely detectable. The resulting flows are quite well 
described as steady drifting waves. Spatial spectra are relatively clean and dominated 
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FIQURE 5. SVD phase portraits (u, c, e, g and i) and Poincar6 sections (b, d, f, h and j) for five of 
the cases illustrated in figures 3 and 4, derived using a [50,1] window on temperature time series 
from a single thermocouple in the flow: (a, b) case (ii); (c, d )  case (iii) ; ( e , f )  case (iv); (9, h) case (v) ; 
(i,j) case (vi). Parameters for cases (ii)-(vi) are shown in table 1. Phase portraits are projected onto 
the first two singular vectors (cl, cz) ,  and Poincar6 sections are projected onto the (cz,  cQ) plane at 
c1 = 0. Dots denote positive-going sections (Le. dc,/dt > 0), crosses denote negative-going sections. 

primarily by m = 3 and its harmonics, the latter being of comparatively large 
amplitude. The temperature frequency spectrum (figure 4g) is dominated by the 
main drift frequency wd and its harmonics, corresponding to the drift of the main 
wave and its spatial harmonics past the measurement point. Components 
corresponding to azimuthal wavenumbers up to a t  least m = 33 can be identified 
(corresponding to an azimuthal wavelength at  mean radius of only 1.3 cm; e.g. see 
figure 49) .  Also present, however, is a comb of weaker peaks between 0.25 and 
0.4 rad s-l, separated by wd, suggesting that one or more additional frequency 
components, incommensurate with wd and associated with another form of periodic 
behaviour, may be active. The presence of this set of components in T would seem 
to be associated with a weak but distinct component also present in the heat 
transport spectrum around 0.32 rad s-l. 

As Q continues to increase through cases (v) and (vi), a form of structural 
vacillation sets in with a dominant frequency w, around 0.12 rad s-l. The onset of SV 
initially has little effect on the mean azimuthal wavenumber spectrum. The 
frequency spectra, however, rapidly develop a number of broad peaks in both 
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temperature and heat flow between 0.1 and 0.3 rad s-’. At the highest rotation rates 
(see case (vi)), SV has developed to the extent that, although the flow is still 
dominated by m = 3, even the main azimuthal harmonics are scarcely distinguishable 
from the non-harmonic components (cf. figure 3f ). The temperature frequency 
spectrum shows only a single peak at  the wave drift frequency (figure 4i), and 
otherwise resembles red noise, while the heat flow spectrum too (figure 41) consists 
of broadband noise with broad peaks at 0.05 and 0.12 rad s-’. The latter flow would 
therefore seem to lie in the ‘transition zone’ (in the terminology of Buzyna et al. 
1984) prior to the development of fully irregular flow or geostrophic turbulence. 

3.3. Phase portraits (jigures 5 and 6) 
Frequency and spatial spectra are clearly useful for characterizing temporally 
and/or spatially periodic flows, but convey only limited information on systems 
behaving aperiodically. I n  order to characterize the series of flows discussed above 
more fully, phase portraits of the single-location temperature and total heat 
transport time series were constructed using a version of Takens’ ‘method of delays ’ 
(Takens 1980). Takens’ method was used for single-point time series only for 
practical reasons related to  the limitations of the available data acquisition system 
(mainly on sampling rate and storage capability), though we recognize that a more 
satisfactory approach would be to use data taken simultaneously a t  several locations 
(cf. Guckenheimer & Buzyna 1983 ; Broomhead & King 1986). The SVD method was 
used to obtain optimum reprojections of the reconstructed trajectories, and a 
window length 7, of between 75 and 100 s proved most suitable, given the relatively 
long wave drift periods. This value of 7, is somewhat longer than would be suggested 
from the discussion of Broomhead & King (1986; their equation 3.20) though even 
7, = 100 s is still less than most typical fundamental vacillation frequencies. Several 
other values of rW, both longer and shorter than 100 s, were also tried during the 
course of the analysis, down to 7, = 20 s, but the main results were found to  be not 
significantly sensitive to 7, provided it was not much longer than the shortest 
fundamental vacillation period. 

Phase portraits from some of the examples discussed in $3.2 above are shown in 
figures 5 and 6, which show respectively results from the thermocouple time series 
and measurements of the heat transport. Trajectories are shown projected onto the 
first two eigenvectors (c, and c2), and Poincard sections consisting of intersections of 
the trajectory with the plane c, = 0 are shown projected onto eigenvectors c, and c,. 
For the two cases identified as quasi-periodic amplitude vacillations, (i) and (iii), 
thermocouple phase portraits lie on a 2-torus (see figure 5 c ,  d for case iii), in which 
the main toroidal period represents the phase drift of the wave a t  wd and the poloidal 
oscillation represents the amplitude modulation at the vacillation frequency w,. The 
absence of any tendency for the trajectories to exhibit strong clumping in their 
Poincark sections indicates that wd and o, are incommensurate, and confirms that 
these flows are indeed quasi-periodic. 

Phase portraits from the heat transport time series for cases (i) and (iii) take the 
form of closed, near-circular loops of finite thickness, the orbital period of which 
corresponds to 2n/w, (see figure 6c, d for case iii). The thickness of the trajectory, 
resulting in somewhat elongated clumps in the Poincark sections, is consistent with 
slow instrumental drifts in the measurements, so that the trajectory apparently 
exhibits only the singly periodic behaviour associated with the amplitude vacillation. 
The heat transport time series therefore complements that  of temperature by 
removing the component of the signal due only to  the drift of an otherwise steady 
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flow pattern with respect to the apparatus (cf. the analyses of azimuthal mean flow 
by the use of an axial probe in the baroclinic two-layer open cylinder experiments of 
Hart 1985). 

A case of MAV (ii) is shown in figures 5(a ,  b)  and 6(a, b ) .  The basic toroidal 
structure in the temperature phase portrait (figure 5a) ,  similar to that of pure AV, 
is apparent but the Poincar6 section (figure 5 6 )  reveals that the ‘walls’ of the torus 
have a finite thickness significantly greater than can be accounted for by instrumental 
noise. Little systematic structure is apparent within the wall thickness itself, though 
the Poincar6 section of figure 5 ( b )  does contain some strand-like features in both 
branches. In the heat transport phase portraits (figure 6a), the wave drift component 
is again absent, and the trajectories appear to lie on a nearly disk-like structure of 
small though finite thickness. The thickness of the disk-like structure is comparable 
with or somewhat greater than that due to instrumental drift, though the intrinsic 
signal-to-noise ratio for the heat transport measurements is somewhat less than for 
the temperature time series. As shown in $4.1 below, the disk-like appearance belies 
the existence of a torus-like structure related to the two main frequencies w, and w,, 
which is not easily apparent in figure 6(a) because of the large mean ‘winding 
number ’ W ( = wv/wm). 

As the flow moves from amplitude vacillation into the steady wave regime (e.g. 
case iii), the toroidal structure of the temperature signal collapses onto a simple 
closed loop of very small thickness (see figure 5e) .  The decay of the strength of the 
vacillation is well represented in the heat transport phase portraits, in which the 
limit cycle appears to collapse almost to a point (apart from the effects of 
instrumental noise and parametric drift ; see figure 6d). 

The onset of SV in figures 5 (9, h) and 6 (f, g )  initially has rather little effect on the 
temperature phase portrait, the weak vacillation resulting only in a slight thickening 
of the limit cycle beyond that due to instrumental noise. At the largest values of 0, 
where structural vacillation is fully developed (case vi; see figure 5i , j ) ,  the limit- 
cycle structure is scarcely discernible in the temperature data. The phase portrait 
takes on a highly complex, rather ragged form with occasional excursions well 
beyond the confines of the original limit cycle in (iv) (associated with sporadic, strong 
and rapid cooling events in the time series). The heat transport phase portraits (e.g. 
figure 6f, g )  show little systematic structure emerging with the onset of structural 
vacillation other than a broad separation of positive and negative passes; a more or 
less space-filling structure appears to emerge as soon as the structural vacillation 
reaches a perceptible amplitude. The phase portraits thus provide clear evidence of 
quite different qualitative behaviour between the onset of AV and SV. 

3.4. Dimensions and L yapunov exponents (&we 7) 
In  characterizing the behaviour of nonlinear systems, it is often desirable to detect 
the onset of chaotic behaviour in transitions from quasi-periodicity, and to obtain 
estimates of the degree of complexity of the flow. A variety of methods have 
appeared in the literature in recent years (e.g. see Eckmann & Ruelle 1985; Meyer- 
Kress 1986 for recent reviews). The most common method is to estimate the 
correlation dimension (Grassberger & Procaccia 1983) of the reconstructed attractor. 
This method is known, however, generally to require very large datasets which are 
densely sampled throughout the reconstructed attractor, the number of required 
points increasing exponentially with attractor dimension. Smith (1988), for example, 
concluded that the number of statistically independent points N,, required to 
estimate the correlation dimension to within + 5 %  of its true value exceeds 42M, 
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FIGURE 6. For caption see facing page. 

where M is the greatest integer less than the dimension of the underlying attractor. 
With the present datasets (N < 5 x lo4), this would preclude the reliable estimate of 
dimensions significantly exceeding about 3. Even if sufficient data were available, the 
computational requirements for estimating the correlation exponent for flows other 
than the most simple would still be formidable. 

The SVD method itself provides an estimate of the necessary embedding 
dimension of a dataset from the number of eigenvalues in the singular-value 
spectrum lying significantly above the ‘noise floor ’ (cf. Broomhead & King 1986). 
This measure is not a robust estimate of the true dimensionality of the attractor, 
however, but depends on factors such as the local curvature of the underlying 
manifold (e.g. see Broomhead, Jones & King 1987), which in turn may depend upon 
the choice of sampling and window timescales 7, and 7,. Accordingly, we follow the 
approach suggested by Smith (1988) in using methods based on the analysis of 
localized regions of the reconstructed attractor. In the following analyses, we make 
use of the locally defined pointwise dimension D, (Farmer, Ott & Yorke 1983) derived 
from the SVD phase portraits down to lengthscales limited only by the sampling and 
instrumental noise. For a given flow, the dimension quoted is an average over several 
(typically 20) randomly selected points across the reconstructed attractor. Some use 
was also made of the local SVD analysis of Broomhead et al. (1987) to provide 
additional verification of the values of D, obtained. 

Static invariants, such as the various dimension estimates discussed above, 
provided an indication of the overall intrinsic complexity of the behaviour of a 
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FIQURE 6. SVD phase portraits (a, c, e a n d f )  and Poincar6 sections (b, d and 8 )  for four of the 
cases illustrated in figures 3-5, derived using a [50,1] window on total heat transport time series : 
(u, b) case (ii); (c, d )  case (iii); (e) case (iv), ( j ,  8 )  case (v). Parameters for cases (ii)-(v) are shown 
in table 1. Phase portraits are projected onto the first two singular vectors (cl, c2), and Poincare' 
sections are projected onto the (c,,cs) plane at  c1 = 0. Dots denote positive-going sections and 
crosses denote negative-going sections. 

dynamical system, but are not a particularly sensitive means of directly detecting 
the onset of chaos. Sensitive dependence on initial conditions is the critical property 
of chaotic behaviour, suggesting that an estimate of the largest non-negative 
Lyapunov exponent A, would be the most suitable means of detecting the onset of 
chaos. In the present work, we use the algorithm suggested by Wolf et al. (1985), 
which directly measures the divergence of initially nearby segments of trajectories on 
the reconstructed attractor. Estimates of A, were derived from attractors 
reconstructed using the simplest delay method as well as in SVD coordinates, with 
similar results being obtained. Consequently, results obtained from the SVD 
trajectories are presented below. As with the dimension calculations, the robustness of 
the results obtained was verified by repeating some of the calculations using a range 
of embedding dimensions (5 < K < 12), delay/window times (20 s < 7, < 100 s) 
and evolution timescales (50 s < T~ < 700 s;  cf. Wolf et al. 1985). 

Figure 7 shows estimates of (a)  pointwise dimension D, and ( b )  A, for all the flows 
studied in the Qr = 6.19 x lo5 section as a function of Taylor number (the relevant 
values from temperature time series for cases i-vi are also shown in table 1). Solid 
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squares in figure 7 denote estimates derived from the temperature time series, and 
open symbols denote results for heat transport. Steady wave and regular AV flows 
consistently exhibit pointwise dimensions from the temperature datasets slightly 
exceeding 1 .O and 2.0 respectively, consistent with their respective appearance in the 
phase portraits (figure 5) as limit cycles and 2-tori. Pointwise dimensions for the AV 
cases were also calculated from the corresponding heat transport time series, and 
consistently resulted in D, - 1,  i.e. 1 less than that of the temperature dataset 
because of the absence of the component due to the wave drift. The largest Lyapunov 
exponent associated with these flows is consistently indistinguishable from zero, with 
an upper limit for A, of around 4 x bits s-l (implying an intrinsic 'error- 
doubling' time of > 2500 s or - 1200 'days', corresponding to A, < 0.2 bits per 
orbit). 

Sharp boundaries between quasi-periodic and apparently chaotic behaviour are 
found a t  Taylor numbers of 4.8 x lo6 and 1.0 x lo' (and also probably at 3.8 x lo6), 
associated with the transitions from regular flows respectively to MAV and SV. On 
crossing the boundary from a quasi-periodic regime, D, jumps to a value around 
3 and A,  becomes significantly positive. In the case of the m = 3MAV flows, there 
is a very sharp transition a t  F = 4.8 x lo6 to a state with D, - 3.2, and 
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A, - 2.0 x bits s-l ( -  1 bit per orbit), with little variation in these estimates 
across the MAV regime. The heat transport datasets also indicate a sharp transition 
to chaotic behaviour at this point, with D, jumping to around 2 and A, consistent 
with the temperature data (around 3 x 

At the transition to structural vacillation a t  Y = 1.0 x lo', A, becomes 
significantly positive at  a well-defined value of F.  The estimate of A, is initially quite 
small, then increases rapidly with Taylor number. The pointwise dimension for T(t )  
in this regime, however, remains close to 3, though with some evidence for a gradual 
increase in D, with increasing F. Some attempts were also made to estimate D, from 
heat transport datasets in this regime though, in contrast to the MAV regime, the 
results do not indicate consistency with T(t) .  In particular, estimates of D, from N ( t )  
consistently equal or exceed those from T(t) ,  suggesting either that the estimates in 
this regime are in error or that the flows are not adequately characterizable as low- 
dimensional attractors. Evidence for extensive scaling regions in the correlation 
functions obtained in this regime was often found to be marginal, with scaling 
behaviour often present only over a fraction of a decade in relative radius. Neither 
of the two possibilities raised above can therefore be ruled out (see $5.1 for further 
discussion). 

We have therefore identified two distinct regions of parameter space at  which 
a periodic (or quasi-periodic) flow gives way to an apparently chaotic state with 
finite predictability and (at least for the MAV regime) a small attractor dimension 
(D, < 3.5). The detailed properties of these two chaotic regimes appear to be quite 
different, however, and the following section discusses these properties and the 
transitions leading to their development in greater depth. 

bits s-l). 

4. Quasi-periodic and chaotic regimes 
4.1. Periodic and chaotic amplitude vacillation 

The observed characteristics of periodic amplitude vacillation have been described in 
some detail by Pfeffer et al. (1980), HWCJS, H85 and Buzyna et al. (1989). Amplitude 
vacillation is generally observed to be a quasi-periodic phenomenon in which the 
dominant azimuthal wavenumber and its harmonics are periodically modulated in 
both amplitude and frequency (or phase speed) with a period - 3@100 times that of 
the background rotation T~ ( = 27c/Q). The dominant wavenumber exhibits a periodic 
growth and decay, with relatively rapid growth and a slower rate of decay (cf. H85, 
though contrast Buzyna et al. 1989). As discussed above, the total heat transfer is 
also modulated at the vacillation frequency, but with a small phase lag with respect 
to the dominant wavenumber, such that maximum heat transfer occurs just as the 
amplitude of the dominant wavenumber begins to decay. 

At  the onset of the MAV regime, slow irregular oscillations were found to occur in 
the modulation index of the total heat transfer and amplitude of the dominant 
wavenumber and its harmonics, apparently leading to a chaotic attractor organized 
about a 2-torus in temperature variations (e.g. figure 5a), but with more complex, 
apparently disk-like structure in heat transport (e.g. figure 6a).  An indication that 
there may be more structure to the flow than figure 6 (a,  b)  would suggest is evident 
from figure 8(a ,  b )  which show the Poincarb section from figure 6(a)  and the return 
map obtained by plotting c2(n) against c2(n+ 1) for each successive crossing by the 
heat transport trajectory of the plane c1 = 0 (in the sense of c1 decreasing). 

The method of delays (and SVD) can produce very poor embeddings of flows with 
two widely separated dominant frequencies, particularly when the time delay (or 
window length in the case of SVD) is chosen to suit the higher frequency. This point 
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FIQURE 8. (a) Negative-going Poincar6 section and (b) first return map, obtained by plotting 
successive values of c2 from the Poincar6 section in (a), for the time variation of heat transport from 
the m = 3MAV flow (case ii); ( c )  negative-going Poincar6 section and (d )  first return map (c,(n),  
c,(n+ 1))  from the phase portrait obtained from the artificial quasi-periodic time series A(t)  = 
A,+(A,+A,sinw,t)sinw,t. Series in (c) and ( d )  were sampled every 2 s, with A ,  = 185, A ,  = 13, 
A ,  = 3, 2x/o,  = 167.0 s and 2x /w2  = 1310 s, and analysed using 7, = 100 s. 

is illustrated in figure 8(c, d )  using an artificial quasi-periodic time series generated 
from 

A ( t )  = A ,  + [A,  + A ,  sin w, t ]  sin w, t ,  

with w1 -4 w,, and analysed using a SVD window based on the shorter period T ~ .  The 
amplitudes, frequencies and window length used in (4.1) and figure 8(c, d )  were 
chosen so that the signal approximately simulates case (ii) in figure 6(a, b)  (see 
caption to figure 8 and table 1 for details). Because w1 -4 w,, the Poincar6 section from 
the artificial time series in figure 8 ( c )  nearly collapses onto a line parallel with the c2 
axis, and the return map (figure 8 d )  comprises a perfect ellipse with its major axis 
aligned along y = x (cf. the 3MAV return map of figure 8 b ) .  A better embedding of 
the flow in three dimensions can be achieved by regarding the coefficients cl(t), c,(t) ,  
c&) . . . as the basic observables and taking the coordinates of the embedding to be 
( c l ( t ) , c , ( t ) , c , ( t + T ) ) .  Results close to optimum are obtained when T is chosen to be 
roughly equal to one-quarter of the period of the lower frequency (i.e. 2 x / w , ) .  

Figure 9(a)  presents the negative-going Poincar6 section a t  c1 = 0 in the (c2(t ) ,  
c , ( ~ + T ) )  plane for case (ii) (that chosen for figure 8a, b )  using T x ~ m .  Its appearance 
is very similar to that of figure 8 ( b ) ,  though is more closely circular. Note that, if T 

were chosen to be close to the shorter of the dominant periods (i.e. T"),  the Poincar6 
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FIGURE 9. (a) Poincark section (at c1 = 0) in the [cz(t ) ,  c&+T)]  plane with T = 350 s ( m ~ 7 , )  for the 
time variation of heat transport from an m = 3MAV flow (case ii), and (b) first return circle map, 
obtained by plotting successive values of azimuth angle 0 about the centre of mass of (a). 

section would be almost identical to the return map of figure 8 ( b ) .  As anticipated, 
figure 9(a) provides a section consisting of points scattered about a closed loop, 
confirming the presence of toroidal structure in the heat transport signal. Taking the 
centre of mass of the points as the origin, the points on the section can be specified 
by polar coordinates ( r ,  8 ) ,  in which the angle 8 effectively represents the phase of the 
modulation frequency. Figure 9 ( b )  displays the quasi-circle return map (8(n), 
8(n+ 1)) .  Clearly the phase of the modulation increases progressively, in agreement 
with the heuristic description (by analogy with (4.1)) of the modulation as quasi- 
periodic, but in two regions the map approaches the diagonal (on which 8(n) = 
8(n+ 1)).  Since points progress slowly through these regions, a large fraction of the 
points are clustered about them. Where the map approaches the diagonal, its shape 
would appear to be similar to that on which the type I intermittency route to chaos 
is based (e.g. see Berg6, Pomeau & Vidal 1984). It is important to remark, however, 
that the precise shape of the return map is quitely strongly sensitive to the choice of 
embedding parameters (especially 7 ) ,  and the wavy and inhomogeneous nature of 
figure 9 ( b )  appears to be largely due to the ellipticity of the Poincare' section in figure 
9 (a) .  It is reasonably clear, however, that the return map shows no obvious evidence 
for any non-invertible region, although the noise level is such that a small region of 
non-invertibility cannot be ruled out. 

From the above discussion, we may infer that the flow in the 3MAV regime is 
largely deterministic. T( t )  is apparently organized about a 3-torus with incom- 
mensurate frequency components centred at  wd, w, and w,. A pure 3-torus flow 
would not, however, be chaotic (an application of the Wolf et al. 1985 algorithm to 
the time series in (4.1) and figure 8c, d,  for example, led to A, z 0). In contrast, all 
other evidence relating to the 3MAV flows in figures 5-7 appears to point to chaotic 
behaviour, implying that an additional aperiodic component is also present, possibly 
accounting for much of the irregular radial scatter in figures 8 ( b )  and 9 (a) .  Whether 
the nature of this aperiodic component is due either to deterministic chaos or to 
quasi-stochastic perturbations, remains somewhat uncertain (see 5.3). 

Upon closer examination of the spatial structure of the 3MAV flows, it was 
apparent that the spectrum of wavenumbers participating in the MAV is sig:iificantly 



620 P. L.  Read, M .  J .  Bell, D .  W .  Johnson and R. M .  Small 

1 1  

0 

' 1  

2500 
Time (s) 

0 2500 
Time (s) 

FIGURE 10. Time variation of the temperature amplitude of the first four azimuthal Fourier modes 
at mid-height and mid-radius in (a) a chaotically modulated m = 3MAV (cme ii) and (b) the 
large-? m = 3AV (case i) : -, m = 3  .--- 1 ,  .-, m = 4; ......, m = 1 ( x  2). 

more complicated than for straightforward periodic AV. Figure 10 (a) shows the 
typical evolution of the amplitudes of wavenumbers m = 1 4  a t  mid-height and mid- 
radius, showing just over one period of the long-timescale modulation (7, - 2000 9). 

All components are evidently vacillating a t  the same frequency, but with the long- 
period modulation of m = 3 almost in antiphase with that of m = 2 .  Indeed around 
t = 700 s, m = 2 almost achieves dominance over m = 3, though this is very short- 
lived. 

The apparent coherence of the amplitude fluctuations of m = 2 4  (and m = 1 2 )  is 
further confirmed from their respective phase propagation. All three wavenumber 
components m = 2 4  were found to drift at approximately the same frequency, such 
that the 'phase-locking function ' (as suggested by Hide, Mason & Plumb 1977, and 
James et al. 1981), defined by 

@m = $ m + l +  $m-l-2$m (4.2) 

(where $m is the instantaneous azimuthal phase of wavenumber m), was 
approximately constant for m = 3 a t  G3 = IC (see figure 11, where G3 has only been 
calculated when the amplitude of all three components was greater than 0.06 K to  
ensure adequate signal-to-noise ratio). At the same time, m = 1 was found to drift 
slowly in relative phase with respect to the apparatus, with a frequency roughly 
similar to w,. On closer examination, however, it was apparent (e.g. from plots of 0.J 
that  m = 1 was not phase-coherent with m = 2 4 .  Because m = 1 is consistently 
smaller in amplitude than the other three lowest wavenumbers, quantities such as Gz 
can only be reliably calculated more sparsely than for G3, Nonetheless, it is found 
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FIGURE 11. Time variation of the phase-locking function Qj8 (see text and (4.2)) for a chaotic 
m = 3MAV flow (case ii). The function is plotted only where the temperature amplitude of all 
three wavenumber components exceeds 0.06 K. 
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that Gz is much more variable than G3, taking values over the full range &27t with 
apparently uniform probability. 

This would suggest that the most obvious path for wave-wave interactions in a 
sideband instability (i.e. involving a pair of resonant triads, each of which includes 
m = 3, its upper or lower azimuthal sideband and m = l) ,  is not active in this flow. 
James et al. (1981) also found that this set of triad interactions was not active in the 
regular wave regime of the annulus. They pointed to an alternative route, found in 
their numerical simulations to result in the excitation of sidebands, via the first 
harmonic of the dominant wavenumber (i.e. triads involving (a )  the self-interaction 
of m = 3 to excite the harmonic m = 6, and (b )  m = 6 losing energy to m = 4 and 2;  
see James et al. 1981, their figure 7) ,  which would also be consistent with a constant 
value for cD3 without involving the long wave m = 1. This route may thus help to 
excite a form of modal competition between adjacent wavenumbers, giving rise to 
temporal chaos, though with a strong degree of spatial order as observed. 

The vacillation frequency is found to vary systematically in parameter space, such 
that o, is primarily dependent on F (see figure 12b), and is apparently a 
continuously increasing function of 9, even within the MAV regime. Regression 
analysis indicates that 7, - F-o.a2 to a good approximation (see figure 13b). Figure 
12 (a) shows (subjectively interpolated) contours of 7, as measured within the 
m = 3MAV regime, indicating that the modulation period reduces rapidly as 8 is 
increased. The contours of 7, appear roughly parallel with the line 09-a = constant 
( -  1/R, where R is the ‘dissipation parameter’ R = Ei/Ro, E being the Ekman 
number and Ro the Rossby number; cf. Pedlosky 1970; Hart 1986). Regression 
analysis of the observed variation suggests that 7, - RS.? (see figure 13a), indicating 
a considerable sensitivity of w, to 0, and suggesting that W = w,/w, - 8-e.7F-1.s. 

As 0 is increased through the MAV regime, it was noted in $ 3  that a large- 
amplitude periodic AV regime was apparently recovered for a small interval in @ 
before m = 3 gave way to a weak m = 2AV around 0 = 0.75 (see figure 1) .  Upon close 
examination of the time variation of each individual azimuthal wavenumber 
component within the large-amplitude 3AV regime, it is evident (figure l o b )  that, as 
in the 3MAV state, the sidebands of the dominant wave have significant amplitude 
and vacillate in phase with m = 3 with a near-constant value of the phase-locking 
function G3, Furthermore, the peaks in the amplitudes of m = 2 and 4 are not 
uniformly similar, but undergo a roughly cyclic variation with a period close to 37,. 
This period-3 modulation would seem to be an extension of the long-period 
modulation which forms part of the chaotic 3MAV regime, since the frequency ratio 
W = w,/w, is found to vary systematically with 0 (and, to a much lesser extent, 
with S). 

We therefore conclude that the case (i) m = 3AV flow is simply a state within the 
3MAV regime, but in which w, and w, are phase-locked in the ratio 3 : 1, reducing 
the effective number of independent frequencies in the flow to two (i.e. wd and w,). 
Hence the flow is quasi-periodic rather than a chaotic vacillation. The azimuthal 
components m = 2 4  are again found to have approximately the same average 
frequency, and the two modes of amplitude oscillation are presumably phase-locked 
through the same nonlinear interactions as responsible for the chaotic m = 3MAV 
states as discussed above. 

4.2. ‘Steady’ waves 
The existence of a regime simply comprising a single dominant wavenumber 
component and its harmonics, which drift steadily a t  constant amplitude, has been 
a matter of controversy for several years. Hide & Mason (1975) and HWCJS indicate 



Flow regimes in a rotatingjuid annulus 

3.6 

2.8 1 

623 

+ 
-1.48 -1.46 -1.44 -1.42 -1.40 -1.38 

iog,, (e-1~-1’4) 

, . . , . . , . . , . .  
6.2 6.4 6.6 6.8 

%lorn 
0 

FIQURE 13. Systematic variation of vacillation and long-period modulation periods (7, and 7, 

respectively) with external parameters, obtained from experimental measurements and plotted 
logarithmically: (a) 7, ws. @-1F-1’4; ( b )  7, ws. 9. 

the existence of such a regime in a region of parameter space intermediate between 
the AV and SV states, while Pfeffer et al. (1980) and Buzyna et al. (1984) report a 
direct transition between AV and SV and do not observe any steady waves. The 
source of this controversy might be due in part to a matter of definition (H85, for 
example, defines AV as a state in which I ,  2 0.05, corresponding here to 7 2 0.07). 
In the present study, the amplitude of AV is found to decrease uniformly towards 
zero as SZ increases. Thus, case (iii) in figures 2-6 marginally qualifies as a steady 
wave state under the terms of H85’s definition. Nevertheless, it is clear from the 
frequency spectra of heat transport that a weak oscillation at a frequency 
continuously traceable from w, in case (i) is present right into the SV regime. 
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4.3. Structural vacillation 
The spatial and temporal characteristics of SV have been discussed from different 
viewpoints by Hide & Mason (1975), Pfeffer et al. (1980) and Buzyna et al. (1984). All 
these authors identify wave shape or structural vacillation with a roughly periodic 
variation in the shape or orientation of the dominant wave, but with relatively small 
changes in amplitude or total heat transport. Pfeffer et al. (1980) consider SV to 
comprise a broadly oscillatory variation of the radial energy distribution within the 
dominant azimuthal wavenumber component, but with relatively small variations in 
total energy. Buzyna et al. (1984) further characterize SV as a semi-periodic state 
which seems to form an intermediate stage towards the emergence of fully developed 
irregular flow or geostrophic turbulence. 

Although the thermal measurements in the present study cannot distinguish 
variations in the radial direction, the signature at mid-radius does show a weak 
fluctuation in the amplitude of the dominant wavenumber and a rather stronger 
relative fluctuation in the amplitude of the first and higher azimuthal harmonics 
(m = 6 , 9  etc.). This would seem to suggest that Pfeffer et al.’s (1980) characterization 
is somewhat incomplete. A corresponding, though weak (7 - 0.01), fluctuation is also 
observed in the total heat transport (see figure 2 d ) ,  all taking place with a period of 
around 207, (where T~ = 27c/51). 

A particularly striking result of the present work is the suddenness at which the 
SV state sets in from a steady drifting wave as parameters are changed. Figure 14 
shows a set of extracts from heat transport time series, N ( t ) ,  and their corresponding 
power spectra at three points closely spaced in parameter space spanning this 
transition. The onset of SV is immediately distinguished from the steady wave state 
by the relatively large-amplitude bursts of an apparently noisy periodic signal in N .  
This signal is, however, significantly aperiodic, as indicated by the broad spectral 
peaks observed around 0.12 and 0.24 rad s-l. The smaller peak at w = 0.05 rad s-l 
appears to be continuous with the oscillatory component previously associated with 
AV. Though apparently unrelated to the new SV frequency components, the 
component at  0.05 rad s-l evidently grows anew in amplitude on moving into the 
fully developed SV regime. 

As figure 14 indicates, the transition from a steady wave to SV is accomplished by 
increasing 9 (and/or reducing 8) over a range of less than 0.5% (i.e. increasing 51 
by 0.02 rad s-l). At  the intermediate value of 5, the time series exhibits transient 
bursts of SV separated by periods of long (though irregular) duration, during which 
the flow appears to resemble the steady wave regime. This observation would suggest 
that the bifurcation(s) leading to chaotic SV might follow a route to chaos via 
intermittency (of type I, e.g. Berg6 et al. 1984). It was not possible, however, to 
investigate any finer structure associated with this transition (such as scaling 
behaviour in the degree of intermittency, e.g. Berg6 et al. 1984), since this would 
require varying SZ in steps smaller than the present resolution of the experimental 
control system. A closer study of this transition should be an important component 
of future work. 

5. Discussion 
The present paper has shown evidence for two distinct regimes of flow in the 

thermally driven rotating annulus which appear to represent behaviour which is 
disordered in time but (at least partially) ordered in space, and which are each 
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obtained from regular flows via sharp transitions as external parameters are 
gradually varied. These properties, and quantitative estimates of apparent 
‘invariants ’ (such as attractor dimensions and Lyapunov exponents) from time- 
embedded phase portraits, are indicative of low-dimensional chaos, though of two 
quite different types which appear to  arise from quite different dynamical 
mechanisms. 

5.1. Amplitude vacillation 
The characteristics of the periodic AV regime in the present study are broadly in 
agreement with previous work (e.g. Hide & Mason 1975; Pfeffer et al. 1980; Buzyna 
et al. 1984), although the observed transition to  chaotic MAV does not appear to have 
been identified in earlier studies. Some evidence for MAV has appeared in some 
earlier work (Fowlis & Pfeffer 1969), though such modulations were attributed at the 
time to the disturbing effect of measurement probes. In  the present cases, 
measurement probes do not appear to  have a strong influence on the flow, and the 
chaotic MAV would seem to be a phenomenon intrinsic to  the underlying dynamics. 

Somewhat in contrast to  the SV flows discussed below, the chaotic MAV flows are 
apparently robustly characterized by the ‘invariants ’ (Al and D,) as low-dimensional 
chaos, which may arise from the nonlinear competition between two adjacent 
azimuthal wavenumber components influenced by secondary wave-wave inter- 
actions involving the zonal harmonic of the dominant wave (see 54.1). I n  particular, 
estimates of A ,  from T(t) time series are in reasonable agreement with those derived 
from N(t) ,  while estimates of D, from T( t )  consistently exceed estimates from N ( t )  by 
approximately 1, as expected from the absence of components due to wave drift in 
N ( t ) .  The resulting MAV flows are evidently organized about a quasi-periodic state 
with three independent frequencies in T(t)  as a ‘noisy 3-torus7, and this essential 
structure does not appear to vary significantly within the MAV regime, even though 
the winding number w,/o, may vary considerably in parameter space. 

The occurrence of ‘noisy periodic’ chaos (and of a quasi-periodic period-3 
modulation ‘window ’) is strongly reminiscent of some of the examples of ‘ baroclinic 
chaos ’ obtained by Hart (1985, 1986) and Ohlsen & Hart ( 1 9 8 9 ~ )  in a mechanically 
forced two-layer system. Indeed, the superficial appearance of phase portraits from 
T( t )  and N(t)  in figures 5 and 6 bear a strong resemblance to  some of the results of 
Hart (1985), with our T( t )  forming the counterpart to Hart’s ‘wave probe’ data and 
ourN(t) roughly equivalent to Hart’s zonal flow data, which might suggest a common 
mechanism for chaos in two-layer and continuously stratified flows. Upon comparison 
of linear return maps from the zonal flow (N( t ) )  data, however, the apparent 
resemblance between these two forms of noisy periodic flow is shown to be false. 
Hart’s return maps have a roughly parabolic form with a mid-range extremum, 
suggestive of the logistic map, whereas our N(t) return maps (figure 8 b )  show a 
double-valued elliptical form indicative of an underlying torus, revealing a 
qualitatively different mechanism for chaotic behaviour. In  addition, Hart observed 
clear evidence for a period-doubling cascade in the transition sequence to  chaos in his 
experiments. No evidence for period doubling was found in the present work, though 
it may be that the route followed here in parameter space (i.e. keeping the Grashof 
number constant) made such a phenomenon difficult to distinguish. 

Some of the clearest examples in the experimental literature of period-doubling 
cascades from initially quasi-periodic flows are found in the work of Libchaber, 
Fauve & Laroche (1983), who detect such cascades following frequency locking of the 
original modes. I n  the present system, this would presumably require following a 
route in parameter space that maintained the principal (‘bare ’) winding number 
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(w,/w,) constant while nonlinearity was increased. As the discussion of 54.2 
indicates, this would appear to entail following a route which keeps O F - :  
approximately constant ; a route which would require simultaneous and continuous 
variation of both AT and D. Such a route was beyond the scope of the present 
experimental control system, but should be investigated in future experimental 
work. 

In fact, the transition to chaotic MAV in the present work would seem to have 
more in common with the so-called ‘mode-softening’ route to chaos (Langford et al. 
1980), described for the Rayleigh-BQnard system with a magnetic field by Libchaber 
et al. (1983). In  these experiments, an initially periodic state underwent a Hopf 
bifurcation to a quasi-periodic state with the addition of a new component at  very 
low frequency. An increase in Rayleigh number Ra led to a steady decrease in the 
frequency of the new component until chaotic behaviour set in at a well-defined value 
of Ra. Libchaber et al. (1983) conjectured that this behaviour was associated with the 
interaction of an oscillatory mode and a stationary, symmetry-breaking instability ; 
the very low-frequency oscillation arises from the competition between these two 
modes and chaos arises in association with the presence of a homoclinic orbit (e.g. 
Langford et al. 1980). 

In the present case, the oscillatory mode is clearly identified with the periodic AV 
of m = 3. Symmetry breaking is found to occur at  the onset of MAV in association 
with the occurrence of azimuthal sidebands (m = 2 and 4), both of which (with m = 3) 
have the same average drift frequency, and are therefore stationary with respect 
to a certain frame of reference. Because the transitions to chaos observed in Hart’s 
(1985, 1986) and Ohlsen & Hart’s ( 1 9 8 9 ~ )  experiments were mainly from flows in 
which m = 1 or m = 2 were initially dominant, symmetry breaking associated with 
the presence of non-harmonic azimuthal sidebands did not occur (since the sidebands 
were also subharmonics). An important aspect of future work will be to investigate 
the transition to chaotic MAV more thoroughly in the thermal annulus, following 
different (and more highly resolved) routes in parameter space. These studies should 
include cases starting from a lower dominant wavenumber (m < 3) in order to 
examine the role of different kinds of azimuthal symmetry breaking in selecting the 
preferred route to chaos and to examine whether transition sequences more closely 
similar to those found by Hart (1985), e.g. involving period-doubling cascades, could 
occur in the present system. 

5.2. Structural vacillation 

The other type of phenomenon which may represent a form of low-dimensional chaos 
(SV) is quite different in form to MAV. The characteristics of the SV regime here and 
the transitions leading to it are broadly in agreement with previous studies (e.g. Hide 
& Mason 1975; Pfeffer et al. 1980; Buzyna et al. 1984), the most remarkable new 
results from the present work being to demonstrate the extreme sharpness of the 
steady wave/SV transition. The rapid onset of intermittent bursting oscillations 
evidently occurs within a relative range of Taylor number of <0.5%, with some 
suggestion of a gradual increase in the frequency and duration of the intermittent 
bursts as D is increased. The resulting SV state appears to be immediately chaotic 
with A, > 0 and D, - 3, with no intervening quasi-periodic state. There is, however, 
some doubt as to whether we have been able to characterize robustly an invariant 
attractor dimension for the SV flows. Phase portraits within the SV regime show 
little structure apart from an irregular broadening of the underlying limit cycle in 
temperature variations associated with the drift of the dominant wave, and evidence 
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for some irregular cyclic behaviour in the total heat transport. Dimension estimates 
for T and N in this regime are not in particularly good agreement, especially a t  high 
values of 52. It therefore remains an open question as to whether the apparent 
plateau in D ,  for T in figure 7 ( a )  is a true estimate of the appropriate attractor 
dimension, or represents even a lower limit. 

It cannot be ruled out, for example, that the apparently chaotic behaviour 
observed with SV is not deterministic chaos in the accepted sense, but may represent 
transient quasi-chaotic behaviour, perhaps intermittently exploring a high- 
dimensional space a t  low amplitude along the lines discussed, e.g. by Tavakol & 
Tworkowski (1988) or Crutchfield & Kaneko (1988). The latter associate extensive 
transient activity with the growth of disturbances in spatially extended systems. In  
annulus systems such as investigated herein, SV seems often to entail the 
development of small-scale disturbances within the larger scale near-steady wave 
patterns (e.g. see HWCJS). It would be of interest to  determine from more detailed 
measurements (and ideally, numerical simulations : see below) the extent to which 
such disturbances behave as independent locally evolving (as opposed to normal 
mode) features. It is worth remarking also that the possible importance of locally 
evolving disturbances (i.e. which are not normal modes) in the growth of forecast 
errors in atmospheric weather prediction models is becoming increasingly recognized 
(e.g. Farrell 1989), and may result in the intermittent transient growth of 
disturbances a t  super-exponential rates. Such behaviour renders the concept of a 
finite-dimensional attractor, with its spectrum of Lyapunov exponents, inadequate 
as a characterization of the flow. 

5.3. Chaos or 'noise amplification'? 

In both the SV and MAV transitions to chaos, a matter for some concern is the extent 
to which the behaviour of certain characteristics of the flows become strongly 
sensitive to the external parameters. In the case of SV, intermittent chaotic bursts 
were found to begin to occur after changing 52 by only 0.01 rad s-l. For MAV, it was 
found in $4.2 that the modulation frequency w, varied approximately as R+'.?, and 
that the winding number w,/w, varied roughly as W'.?Y -1.6. 

If the observation of phenomena intrinsic to  the underlying dynamics demands 
that external conditions be maintained constant to  tolerances compatible with these 
sensitivities, such a requirement would place a considerable strain upon the 
performance of any experimental control system, especially in a rotating frame for 
periods extending to  many hours. In  particular, one might envisage the appearance 
of intermittent SV as due simply to  slow random drifts in 52 and/or AT which might 
cause the system sporadically to cross a bifurcation point. For the MAV form of 
baroclinic chaos, the extreme sensitivity of winding number W to AT and (especially) 
to 52 might even suggest that the appearance of slow aperiodic behaviour was due 
simply to the amplification of random drifts in external parameters. 

I n  the latter case, the clear evidence suggesting that MAV is characterizable as a 
form of low-dimensional chaotic behaviour, with robust A, and (less certainly) D, 
over a significant range of 0 and F,  would seem to indicate that the effects of 
random drifts (presumably implying a high intrinsic dimension) do not dominate the 
behaviour of the observed flow. It is important to make the cautionary remark, 
however, that  i t  is difficult in principle to rule out the effects of such drifts in external 
parameters in determining flow behaviour from a consideration of our laboratory 
experiments and measurements alone. The assertion that the phenomena discussed 
here can be interpreted as intrinsic to the internal dynamics of the annulus would be 
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considerably strengthened by a demonstration that such phenomena can be 
successfully simulated in a numerical model, for which external parameters can be 
maintained constant and noise-free almost to arbitrary precision. Direct simulation 
of the chaotic vacillations discussed here, for example, would provide a considerable 
challenge to a full NavierStokes simulation model of annulus flows (e.g. see 
HWCJS), though the rewards from a successful simulation in terms of diagnostic 
information and subsequent dynamical insight would be very worthwhile. At a less 
ambitious level, the use of simpler, spectrally truncated low-order models in 
attempts to reproduce transition sequences and qualitatively similar forms of 
baroclinic chaos to our experiments could also provide valuable insight into possible 
mechanisms for chaotic behaviour. 

5.4. Low-order models 
The periodic vacillations and apparent transitions to low-dimensional chaotic 
behaviour in the present work indicate that the initial stages in the development of 
disordered baroclinic wave motions are a form of ‘weak turbulence’. The essence of 
the dynamics, including typical sequences of flow transitions, should therefore be 
capable, at  least in principle, of being captured in a ‘low-order’ model with a small 
number of degrees of freedom. 

Various studies have examined the development of periodic vacillations leading to 
chaos in highly truncated spectral models of baroclinic waves. Pedlosky (1970, 1971) 
has discussed the development of a form of amplitude vacillation in a weakly 
nonlinear model comprising a single zonal wave mode interacting with a zonal flow 
with two-layer vertical discretization. This work was subsequently extended by 
Gibbon & McGuinness (1980) and Pedlosky & Frenzen (1980) to consider the 
transition to chaos, in which similarities to the well-known Lorenz equations (Lorenz 
1963a) were found, including period-doubling cascades, a chaotic region and a 
sequence of period-halving bifurcations as dissipation was varied. Similar periodic 
amplitude vacillations were found in a continuously stratified fluid with a weakly 
nonlinear Eady model comprising a single zonal wavenumber mode and a baroclinic 
zonal flow by Drazin (1970). Transitions to chaotic behaviour in this model, also with 
similarities to the Lorenz set, were found by Brindley & Moroz (1980). 

All these studies were limited, however, to disturbances of unrealistically small 
amplitude at very weak supercriticality, interacting with highly singular zonal flow 
states (either two-layer or continuously stratified flows with no lateral shear and zero 
interior gradient of potential vorticity). Furthermore, their similarity to the Lorenz 
set is restricted only to certain asymptotic parametric limits. In contrast, other 
studies have considered spectrally truncated models of baroclinic waves which are 
not limited to weak supercriticality, though also invoke unrealistic and singular 
zonal flow states. Hart (1986), for example, considered a single wave/zonal flow 
model with two-layer vertical structure, in which a transition to chaotic motion via 
a period-doubling cascade was obtained, through the chaotic attractor differed 
significantly from that of the Lorenz model. Weng, Barcilon & Magnan (1986) 
considered a nonlinear Eady model with a single zonal wavenumber component, but 
with up to two lateral wavenumber modes, each interacting with a baroclinic zonal 
flow. This model was able to capture both an AV and a form of SV (the latter 
entailing an exchange of energy between the radial wavenumber modes). Transitions 
to chaos again involved period-doubling cascades. None of these single zonal 
wavenumber models, however, was able to exhibit behaviour comparable with either 
form of chaotic motion identified here. 
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Boville (1982) discussed some mixed-wave aperiodic vacillations in a fully 
nonlinear two-layer quasi-geostrophic model with moderate spectral resolution, in 
which MAV were obtained with some apparent similarities to our MAV and phase- 
locked mixed-wave AV regimes (cf. cases i-ii). His case at r = 0.08, V = 12 m s-l, for 
example, showed a flow dominated by m = 3 with an AV whose modulation index 
varied slowly and erratically with time, and in which the m = 2 sideband and m = 1 
were also present and vacillating with the same mean frequency as m = 3.  The 
phase relationships between the vacillations of m = 1-3 were not the same as 
observed in our experiments, however, and Boville’s analysis did not examine the 
zonal phase drift of the wave components, the properties of the underlying attractor 
or the detailed transition sequences in sufficient detail to establish whether his model 
actually simulated our experiments. The apparent resemblance is, however, 
sufficiently close to merit further investigation. 

The experimental transition to chaos via SV has not been found in any simple low- 
order model studied to date, and there remains a clear need for more focused 
modelling studies, probably using less severely truncated quasi-geostrophic models, 
in order to elucidate further the essential dynamics of the observed flows. 
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